

Gene Set Analysis – Methods and Tools

Antonio Mora, Ph.D.

(Wechat: antoniocmora) www.moralab.science

21.09.2020

18.18.23

Learn how to distribute your work using this licence

Contents

- 2.1. What is Gene Set Analysis.
- 2.2. Before starting a Gene Set Analysis.
- 2.3. Gene Set Analysis --ORA
- 2.4. Gene Set Analysis FCS
- 2.5. Multiple testing correction
- 2.6. Gene Set Analysis --Software

Contents

2.1. What is Gene Set Analysis.

2.2. Before starting a Gene Set Analysis
2.3. Gene Set Analysis --ORA
2.4. Gene Set Analysis –FCS
2.5. Multiple testing correction
2.6. Gene Set Analysis --Software

You may have heard about:

- Pathway (enrichment) Analysis
- Gene Set (enrichment) Analysis
- Functional Enrichment Analysis
- Ontology Analysis
- Knowledge-driven pathway analysis
- And other names...

It is all the same. We are at the end of a research project and we want to find the meaning of the group of biological molecules that we obtained as a result. What is interesting about them? How are they related to each other?

http://bioinfo.vanderbilt.edu/vangard/services-rnaseq.html

MYC

https://www.otogenetics.com/wp-content/uploads/2017/12/RNA-Seq-VS-Microarray.jpg https://www.researchgate.net/figure/ChIP-seq-workflow-and-dataanalysis_fig1_321662815

Gene set analysis: Interpreting the query set as pathways or other gene sets.

"Gene Set Analysis" Elements:

A query set: A group of genes that were the result of some experiment *Example of query set:* Differentially expressed genes (up-regulated, downregulated, or the entire list).

HK1
ADPGK
GPI
PGK1
PKM2
ALDOA
GAPDH
BPGM
ENO1
PFKP
GRB2
HRAS
PI3K
RAC1
PAK1
MEKK1
MEKK2
ERK1
CREBBP
MYC

Reference Databases:

Pathway / Ontology / Gene set Databases.

Statistical Method

Is my group of genes more enriched in one specific gene set than a group of genes randomly chosen?

Gene Set Analysis Workflow

¥.

COMPUTATIONAL METHODS

https://doi.org/10.1093/bib/bbz090

自自自由

REFERENCE DATABASES

10.15

Statistical Tests

The ORA approach (For a gene list, e.g. genes with expression change > 2-fold)

Pathway A:

Pathway A is enriched with genes from my gene list

Pathway B:

Pathway C:

Pathway B is not enriched with genes from my gene list

G7

My Gene List:

Question: Is Pathway C surprisingly enriched with genes from my gene list? My Gene List:

The ORA approach (For a gene list, e.g. genes with expression change > 2-fold)

Over-representation analysis (ORA) is the task of identifying the pathways that contain a number of genes from our gene list that would be hard to find by chance alone.

Are the genes in the intersection too many? What do we mean when we say "too many"? 5 out of 10? 7 out of 10? (We must use Statistics and compare to how many we can find by chance alone!)

The ORA approach (For a gene list, e.g. genes with expression change > 2-fold)

<u>Statistical test</u>: Are there more genes in the intersection than expected by chance alone? (p-value < 0.05?)

Adapted from: Canadian Bioinformatics Workshop

Usually, we do this for all gene sets in the database, and build a table

The FCS approach (Gene rank, e.g. entire list, ordered by differential expression)

Usually, we do this for all gene sets in the database, and build a table

Contents

2.1. What is Gene Set Analysis.

2.2. Before starting a Gene Set Analysis.

2.3. Gene Set Analysis --ORA
2.4. Gene Set Analysis –FCS
2.5. Multiple testing correction
2.6. Gene Set Analysis --Software

The Gene / Protein List

- Be careful about gene/protein identifiers.
- Identifiers (IDs) are ideally unique, stable names or numbers that help track database records. For example, your wechat ID, Entrez Gene ID 41232, etc
- Gene and protein information stored in many databases
 - \rightarrow Genes have many IDs
- Records for: Gene, DNA, RNA, Protein
 - Important to recognize the correct record type

We need both the query set and the pathways/gene sets using the same type of identifiers

HK1 ADPGK GPI PGK1 PKM2 ALDOA GAPDH BPGM ENO1 PFKP GRB2 HRAS PI3K RAC1 PAK1 MEKK1 MEKK2 ERK1 CREBBP MYC

Common Identifiers

Gene Ensembl ENSG00000139618 Entrez Gene 675

Unigene Hs.34012

RNA transcript GenBank BC026160.1 RefSeq NM_000059 Ensembl ENST00000380152

Protein

Ensembl ENSP00000369497 <u>RefSeq</u> NP_000050.2 <u>UniProt</u> BRCA2_HUMAN or A1YBP1_HUMAN IPI IPI00412408.1 EMBL AF309413 PDB 1MIU **Species-specific**

HUGO HGNC BRCA2 MGI MGI:109337 RGD 2219 **ZFIN ZDB-GENE-060510-3** FlyBase CG9097 WormBase WBGene00002299 or ZK1067.1 SGD S00002187 or YDL029W Annotations InterPro IPR015252 OMIM 600185 Pfam **PF09104** Gene Ontology GO:0000724 SNPs rs28897757 **Experimental Platform** Affymetrix 208368_3p_s_at Agilent A_23_P99452 Red =CodeLink GE60169 Recommended Illumina GI_4502450-S

Identifier Mapping

- So many IDs!
 - Software tools recognize only a handful
 - May need to map from your gene list IDs to standard IDs
- Four main uses
 - Searching for a favorite gene name
 - Link to related resources
 - Identifier translation
 - E.g. Proteins to genes, Affy ID to Entrez Gene
 - Merging data from different sources
 - Find equivalent records

ID Mapping Services

¥.

	>> Static URL Come back later							
g#	initial alias >> g:GOSt >> g:Sorter >> g:Orth >> g:Cocoa	c#	converted alias >> g:GOSt >> g:Sorter >> g:Orth >> g:Cocoa >> Copy values	name >> g:GOSt >> g:Sorter >> g:Orth >> g:Cocoa >> Copy values	description	namespace		
1	ТР53	1.1	P04637	ТР53	tumor protein p53 [Source:HGNC Symbol;Acc:HGNC:11998]	UNIPROT_GN, ENTREZGENE, VEGA_GENE, DBASS5, DBASS3, HGNC, WIKIGENE		
2	MDM2	2.1	Q00987	MDM2	MDM2 proto-oncogene, E3 ubiquitin protein ligase [Source:HGNC Symbol;Acc:HGNC:6973]	UNIPROT_GN, ENTREZGENE, VEGA_GENE, HGNC, WIKIGENE		
3	207105_S_AT	3.1	000459	PIK3R2	phosphoinositide-3-kinase, regulatory subunit 2 (beta) [Source:HGNC Symbol;Acc:HGNC:8980]	AFFY_HG_U133_PLUS_2, AFFY_HG_FOCUS, AFFY_HG_U133A_2, AFFY_HG_U133A		
4	P60484	4.1	P60484	PTEN	phosphatase and tensin homolog [Source:HGNC Symbol;Acc:HGNC:9588]	UNIPROTSWISSPROT		

- g:Convert
- http://biit.cs.ut.ee/gprofiler/gconvert.cgi

Ensembl Biomart

http://www.ensembl.org

. AFFY HG U95C AFFY_HG_U95D AFFY HG U95E AFFY_HTA_2_0 AFFY HUEX 1 0 ST V2 AFFY_HUGENEFL AFFY HUGENE 1 0 ST V1 AFFY_HUGENE_2_0_ST_V1 AFEY PRIMEVIEW AFEY U133 X3P AGILENT_CGH_44B AGILENT SUREPRINT G3 GE 8X60K AGILENT_SUREPRINT_G3_GE_8X60K_V2 AGILENT_WHOLEGENOME_4X44K_V1 AGILENT_WHOLEGENOME_4X44K_V2 ARRAYEXPRESS CCDS CCDS_ACC CHEMBL CLONE_BASED_ENSEMBL_TRANSCRIPT CLONE_BASED_VEGA_GENE CLONE_BASED_VEGA_TRANSCRIPT CODELINK CODELINK DBASS3 DBASS3_ACC DBASS5 DBASS5_ACC EMBL ENSG ENSP ENST ENS_HS_TRANSCRIPT ENS_HS_TRANSLATION ENS_LRG_GENE ENS_LRG_TRANSCRIPT ENTREZGENE ENTREZGENE ACC ENTREZGENE_TRANS_NAME GO GOSLIM_GOA HGNC HGNC_ACC HGNC_TRANS_NAME HPA HPA_ACC ILLUMINA_HUMANHT_12_V3 ILLUMINA HUMANHT 12 V4 ILLUMINA_HUMANREF_8_V3 ILLUMINA HUMANWG 6 V1 ILLUMINA_HUMANWG_6_V2 ILLUMINA_HUMANWG_6_V3 MEROPS MIM_GENE MIM_GENE_ACC MIM MORBID MIM MORBID ACC MIRBASE MIRBASE_ACC MIRBASE TRANS NAME OTTG OTTP OTTT PDB PHALANX_ONEARRAY PROTEIN_ID PROTEIN_ID_ACC REFSEQ_MRNA REFSEQ MRNA ACC REFSEO MRNA PREDICTED REFSEQ_MRNA_PREDICTED_ACC •

ID Challenges

- Avoid errors: map IDs correctly
 - Beware of 1-to-many mappings
- Gene name ambiguity not a good ID
 - e.g. FLJ92943, LFS1, TRP53, p53
 - Better to use the standard gene symbol: TP53
- Excel error-introduction
 - OCT4 is changed to October-4 (paste as text)
- Problems reaching 100% coverage
 - E.g. due to version issues
 - Use multiple sources to increase coverage

Zeeberg BR et al. Mistaken identifiers: gene name errors can be introduced inadvertently when using Excel in bioinformatics BMC Bioinformatics. 2004 Jun 23;5:80

Contents

2.1. What is Gene Set Analysis.
2.2. Before starting a Gene Set Analysis
2.3. Gene Set Analysis --ORA
2.4. Gene Set Analysis --FCS
2.5. Multiple testing correction
2.6. Gene Set Analysis --Software

Gene List

Statistical (Enrichment) Test:

What do you mean "enriched"? How many genes are "too many"?

The statistical formulation: If we randomly choose "n" genes, how likely is that all the "n" genes will be in a certain pathway?

If it is very unlikely (low probability), we say that the sample genes are over-represented in that pathway. PIC:

Low probability = Difficult by chance = Gene set may represent gene list

High probability = Easy by chance = Gene set don't represent gene list

The most common ORA test is using the "Hypergeometric distribution" (HG).

N = Population

The HG describes the probability (P) of k successes in n draws, without replacement, from a population of size N that contains K successes.

The Statistical Test: Is this more enriched than expected by chance alone? Is it better than P?

N = Number of items in the population

K = Number of items in the population that we call "successes"

n = Number of items in the sample

k = Number of successes in the sample

Question: What is the probability of success P?

Probability of success: P(X=k)

$$P(X=k)=rac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$$
 ,

$$egin{pmatrix} n \ k \end{pmatrix} = rac{n!}{k!\,(n-k)!} \quad ext{for} \ \ 0 \leq k \leq n,$$

$$egin{aligned} n! &= \prod_{k=1}^n k \ &= 1 \cdot 2 \cdot 3 \cdots (n-2) \cdot (n-1) \cdot n \ &= n(n-1)(n-2) \cdots (2)(1) \end{aligned}$$

$$4! = 4 * 3 * 2 * 1$$

Example: Suppose we randomly select 5 cards without replacement from a deck of cards. What is the probability of getting exactly 2 red cards?

() 荐 111 端 科 久 身 GUANGZHOU MEDICAL UNIVERSITY **Example:** We have 52 students, 26 tall and 26 small. Suppose we randomly select 5 students from the group. What is the probability of getting exactly 2 tall students?

N = Population = Allstudents = 52K = Population success = All tall students = 26n = Sample = 5k = Sample success = Tall students in the sample = 2 N - K = 26n - k = 3What is the probability of success?

Probability of success: P(X=k)

$$P(X = 2) = \frac{\binom{26}{2}\binom{26}{3}}{\binom{52}{5}}$$

$$P(X=2) = \frac{325 * 2600}{2598960} = 0.3251$$

Example: Suppose we are using a database with 52 genes distributed in two pathways, each having 26 genes. Suppose we found 5 differentially-expressed genes in our experiment. What is the probability of getting exactly 2 genes in pathway A?

N = Population = Allgenes in the database = 52 K = Population success = All genes in pathway A = 26 n = Sample = Our full setof DEG = 5k = Sample success = 2N - K = 26n - k = 3

唐州影科大学

GUANGZHOU MEDICAL UNIVERSITY

Probability of success: P(X=k)

$$P(X=2) = \frac{\binom{26}{2}\binom{26}{3}}{\binom{52}{5}}$$

$$P(X=2) = \frac{325 * 2600}{2598960} = 0.3251$$

- But our original question was not the probability of success. The question was if the genes are enriched (over-represented) in that pathway or not.
- We usually accept a threshold of p = 0.05 to decide that.
- Our p = 0.3251 is much higher than that, which means that is easy for those two genes to appear in pathway A just by chance. Therefore, we say that those two genes are not enriched in pathway A.

- ORA tools search for over-representation in a given database of pathways.
- In each case, the sample success is the intersection between our list of genes and one specific pathway (f.ex., if there are 3 genes of our list in pathway B, k=3 for pathway B).
- The tool shows as results the pathways with p smaller than our threshold (usually, 0.05).

The Background

Need to choose "background population" appropriately, e.g., if only portion of the total gene complement is queried (or available for annotation), only use that population as background.

Adapted from: Canadian Bioinformatics Workshop

Should we analyze all genes together? Or separate analyses for up-regulated and down-regulated?

five types of tumours, we illustrate that the separate analysis of up- and downregulated genes could identify more pathways that are really pertinent to phenotypic difference. In conclusion, analysing up- and downregulated genes separately is more powerful than analysing all of the DE genes together.

Should we use all genes in a pathway or gene set?

Some authors filter the gene sets:

Remove gene sets with only a few genes and those with a very large number of genes. Some authors prefer to divide large pathways into sub-pathways:

Low et al. [67] divided the estrogen metabolic pathway into three subpathways involved in androgen synthesis, androgen-to-estrogen conversion and estrogen removal and then found only SNPs within the androgen-to-estrogen conversion pathway were significantly associated with breast and endometrial cancer susceptibilities.

Contents

2.1. What is Gene Set Analysis.
2.2. Before starting a Gene Set Analysis
2.3. Gene Set Analysis --ORA
2.4. Gene Set Analysis --FCS
2.5. Multiple testing correction
2.6. Gene Set Analysis --Software

Problems with gene lists

- Threshold for up- and down-regulated genes is arbitrary (f.ex., fold-change > 2, or log-fold-change > 1.5)
- We get different results at different threshold settings.
- Changes in pathway activity can happen not only if we have a few highly differentially expressed genes but also if we have multiple genes more modestly differentially expressed.

Functional Class Scoring (FCS)

How to score a gene set?

Where are the gene-set genes located in the ranked list? Is there distribution random, or is there an enrichment in either end?

Eden E, Lipson D, Yogev S, Yakhini Z. Discovering motifs in ranked lists of DNA sequences. PLoS Comput Biol. 2007 Mar 23;3(3):e39

How to score a gene set?

	G9 G5 G7 G2 G3 G4
 	G6 G8
	G10
	G11 G15
 	G33 G20
 	G21 G25

My Gene Rank

CO

Scoring a gene set using the mean rank:

Gene Set 2
Mean Rank = (4+5+6+7+10)
(4+3+6+7+10) / 5 = 6.4

There are more complex scoring methods, such as: KS, max-mean, and others

GSEA/mHG: Method

Every present gene (thick red vertical bar) gives a positive contribution, Every absent gene (black vertical bar) gives a negative contribution

Warning: the alignment here between bars and plot is a little off

For mHG, ES score = -log P of hypergeometric test at that threshold

GSEA/mHG: Method

1. Maximum (or minimum) ES score is the final **ES score** for the gene set

2. Can define "leading edge subset" as all those genes ranked as least as high as the enriched set.

Going from ES score to p-value

We can compute an empirical p-value using permutations, in the following way:

- 1. Transforming the gene rank into "n" random ranks and then applying the previous procedure in each case. In the end, we will end up with "n" ES values from the random cases.
- 2. Then we will compare our real ES value to all the "n" random ones. Ideally, our ES value should be higher than the random ones, but it is possible to get some cases where it is smaller just by chance. The ratio of times that a random ES is better than the real one, is our p-value. 5 successes of the random ES out of 100 trials would mean a p-value of 0.05.

In statistical terms...

Empirical p-value estimation (for every geneset)

1. Generate null-hypothesis distribution from randomized data

In statistical terms...

Estimate empirical p-value by comparing observed max ES score to null-hypothesis distribution from randomized data (for every gene-set)

Contents

2.1. What is Gene Set Analysis.
2.2. Before starting a Gene Set Analysis.
2.3. Gene Set Analysis --ORA
2.4. Gene Set Analysis --FCS
2.5. Multiple testing correction
2.6. Gene Set Analysis --Software

Multiple testing correction

A p<0.05 means that there is still a 5% probability of finding some correlation purely by chance. This is a small number, but if you play it 1000 times, it gets very probable that you will find a positive result just by chance.

Therefore, a *correction for multiple testing* is needed. Some of the methods include *Bonferroni* and *False Discovery Rate (FDR)*.

Simple P-value correction: Bonferroni

* If M = # Tests:

Corrected p-value = M * original p-value

- In other words, we are looking for p<0.05/M. If M is 1000 tests (1000 pathways, f.ex.), now p must be less than 0.00005
- Bonferroni correction is very stringent and can "wash away" real enrichments leading to false negatives

False discovery rate (FDR)

- FDR is the expected **proportion** of the observed enrichments due to random chance.
- Compare to Bonferroni correction which is a bound on the probability that any one of the observed enrichments could be due to random chance.
- Typically FDR corrections are calculated using the Benjamini-Hochberg procedure.
- FDR threshold is often called the "q-value"

Benjamini-Hochberg example I

Rank	Category	(Nominal) P-value
1	Transcriptional	0.001
2	regulation	0.002
3	Transcription factor	0.003
4	Initiation of transcription	0.0031
5	Nuclear localization	0.005
	Chromatin modification	
52		0.97
53	Cytoplasmic localization Translation	0.99

Sort P-values of all tests in increasing order

Benjamini-Hochberg example II

Rank	Category	(Nominal) P-value	Adjusted P-value
1	Transcriptional	0.001	$0.001 \times 53/1 = 0.053$
2	regulation	0.002	$0.002 \times 53/2 = 0.053$
3	Transcription factor	0.003	$0.003 \times 53/3 = 0.053$
4	Initiation of transcription	0.0031	$0.0031 \times 53/4 = 0.040$
5	Nuclear localization	0.005	$0.005 \times 53/5 = 0.053$
	Chromatin modification		
52		0.97	0.985 x 53/52 = 1.004
53	Cytoplasmic localization Translation	0.99	0.99 x 53/53 = 0.99

Adjusted P-value is "nominal" P-value times # of tests divided by the rank of the P-value in sorted list Adjusted P-value = P-value X [# of tests] / Rank

Benjamini-Hochberg example III

Rank	Category	(Nominal) P-value	Adjusted P-value	FDR / Q-value
1	Transcriptional	0.001	$0.001 \times 53/1 = 0.053$	0.040
2	regulation	0.002	$0.002 \times 53/2 = 0.053$	0.040
3	Transcription factor	0.003	$0.003 \times 53/3 = 0.053$	0.040
4	Initiation of transcription	0.0031	$0.0031 \times 53/4 = 0.040$	0.040
5	Nuclear localization	0.005	$0.005 \times 53/5 = 0.053$	0.053
	Chromatin modification			
52		0.97	0.985 x 53/52 = 1.004	0.99
53	Cytoplasmic localization Translation	0.99	0.99 x 53/53 = 0.99	0.99

Q-value (or FDR) corresponding to a nominal P-value is the smallest adjusted P-value assigned to P-values with the same or larger ranks.

Benjamini-Hochberg example III

	P-value thresho		0.05	FDR /
Rank	Category	(Nominal) P-value	Adjusted P-value	Q-value
1	Transcriptional	0.001	$0.001 \times 53/1 = 0.053$	0.040
2	regulation	0.002	$0.002 \times 53/2 = 0.053$	0.040
3	Transcription factor	0.003	$0.003 \times 53/3 = 0.053$	0.040
4	Initiation of transcription	0.0031	$0.0031 \times 53/4 = 0.040$	0.040
5	Nuclear localization	0.005	$0.005 \times 53/5 = 0.053$	0.053
	Chromatin modification			
52		0.97	0.985 x 53/52 = 1.004	0 99
-	Cutanlaamia laadization	••••		
53	Cytoplasmic localization Translation	0.99	0.99 x 53/53 = 0.99	0.99

Red: non-significant Green: significant at FDR < 0.05

P-value threshold is highest ranking P-value for which corresponding Q-value is below desired significance threshold

Contents

2.1. What is Gene Set Analysis.
2.2. Before starting a Gene Set Analysis.
2.3. Gene Set Analysis --ORA
2.4. Gene Set Analysis --FCS
2.5. Multiple testing correction
2.6. Gene Set Analysis --Software

Where to find software?: Omicstools

(i) ▲ https://omictools.com/search?q=pathway+analysis	
O PMIC TOOLS	pathway analysis Q • ?
SEARCH	
= FILTERS	<
SEARCH FOUND 341 RES	ESULTS FOR « PATHWAY ANALYSIS »
PLINK Desktop	PLINK ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
PARIS Desktop	PARIS / Pathway Analysis by Randomization Incorporating Structure A A A A A A A (0) Image: 0 discussions Determines aggregated association signals generated from genome-wide association study results. Pathway-based analyses highlight biological pathways associated with phenotypes. PARIS uses a unique
SigMod	SigMod SigMod Market Constraints (GWAS) results and gene network to identify a strongly interconnected gene module enriched in high association signals. SigMod is formulated as a binary

How to learn to use new software?

- 1. Try to find tutorials (or "vignettes" in R).
- 2. Read the manuals to see all other options that were not covered in the tutorials.
- 3. Ask questions. Don't be afraid to ask (but ask after you tried first).

GO

Gene Ontology Consortium

Search GO data

Search for terms and gene products...

Search

Ontology

Filter classes

Download ontology

Gene Ontology: the framework for the model of biology. The GO defines concepts/classes used to describe gene function, and

Annotations Download annotations (standard files) Eilter and download (sustamizable

Filter and download (customizable files <100k lines)

GO annotations: the model of biology. Annotations are statements describing the functions of specific The mission of the GO Consortium is to develop an up-to-date, comprehensive, **computational model of biological systems**, from the molecular level to larger pathways, cellular and organismlevel systems. more

Search documentation

arch

Q

What is the Gene Ontology?

An introduction to the Gene
 Ontology

111/11

128

百百日

DE DE

Same State

	Homo sapiens (REF)			upload 1 (V Hiera	rchy_	NEW! 🕏	+
GO biological process complete	<u>#</u>	<u>#</u>	expected	Fold Enrichment	+/-	raw P value	FDR
endodermal cell fate specification	<u>6</u>	2	.00	> 100	+	3.79E-07	9.95E-04
➡ <u>endodermal cell fate commitment</u>	<u>12</u>	2	.00	> 100	+	1.23E-06	2.42E-03
➡ <u>endodermal cell differentiation</u>	<u>40</u>	2	.01	> 100	+	1.17E-05	1.83E-02
→ <u>endoderm formation</u>	<u>46</u>	2	.01	> 100	+	1.53E-05	2.18E-02
▶ <u>endoderm development</u>	<u>72</u>	2	.01	> 100	+	3.65E-05	4.42E-02
4 formation of primary germ layer	<u>106</u>	3	.02	> 100	+	1.35E-07	7.09E-04
Lagastrulation	<u>152</u>	3	.02	> 100	+	3.92E-07	8.81E-04
+ <u>embryonic morphogenesis</u>	<u>556</u>	3	.08	37.85	+	1.86E-05	2.44E-02
Cell fate commitment involved in formation of primary germ layer	<u>26</u>	3	.00	> 100	+	2.35E-09	3.70E-05
↓ <u>cell fate commitment</u>	<u>232</u>	3	.03	90.70	+	1.37E-06	2.40E-03
↓ <u>cell fate specification</u>	<u>73</u>	2	.01	> 100	+	3.75E-05	4.22E-02
somatic stem cell population maintenance	<u>53</u>	<u>3</u>	.01	> 100	+	1.78E-08	1.40E-04
→ <u>stem cell population maintenance</u>	<u>124</u>	<u>3</u>	.02	> 100	+	2.15E-07	8.44E-04
haintenance of cell number	<u>127</u>	<u>3</u>	.02	> 100	+	2.30E-07	7.25E-04

(i) A https://david.ncifcrf.gov

Gene List 💿 Background 🔵

Step 4: Submit List

Submit List

Annotation Summary Results

Annotation Su		.,		Help and Too
Current Gene List	: List_2			4 DAVID IDs
Current Backgrou	ind: Hor	no	sapier	S Check Defaults Clear All
Disease (1 selected)				
GAD_DISEASE	100.0%	4	Chart	
GAD_DISEASE_CLASS	100.0%	4	Chart	
MIM_DISEASE	25.0%	1	Chart	
Functional_Catego	ories (3 s	elec	ted)	
	25.0%	1	Chart	
	100.0%	4	Chart	
	100.0%	4	Chart	
	100.0%	4	Chart	
Gene_Ontology (3	selected)			
GOTERM_BP_1		4	Chart	
	100.0%	4	Chart	
GOTERM_BP_2	100.0%	4	Chart	
_	100.0%	4	Chart	
GOTERM_BP_4	100.0%	4	Chart	
GOTERM_BP_5				
GOTERM_BP_ALL	100.0%	4	Chart	
GOTERM_BP_DIRECT	100.0%	4	Chart	
GOTERM_BP_FAT	100.0%	4	Chart	
GOTERM_CC_1	100.0%	4	Chart	
GOTERM_CC_2	100.0%	4	Chart	
GOTERM_CC_3	100.0%	4	Chart	
GOTERM_CC_4	100.0%	4	Chart	
GOTERM_CC_5	100.0%	4	Chart	
GOTERM_CC_ALL	100.0%	4	Chart	
GOTERM_CC_DIRECT	100.0%	4	Chart	
GOTERM_CC_FAT	100.0%	4	Chart	
GOTERM_MF_1	100.0%	4	Chart	
GOTERM_MF_2	100.0%	4	Chart	
GOTERM_MF_3	100.0%	4	Chart	
	100.0%	4	Chart	
GOTERM_MF_4	100.0%	4	Chart	
	100.0%	4	Chart	
GOTERM_MF_ALL	100.0%	4	Chart	
			Chart	
GOTERM_MF_FAT				
 General_Annotation Literature (0 selected) 		ecte	ed)	
 Main_Accessions ()		
Pathways (1 selecte				
KEGG_PATHWAY	100.0%	4	Chart	
REACTOME_PATHWAY	100.0%	4	Chart	
Protein_Domains	(2 selected	d)		
REACTOME_PATHWAY Protein_Domains Protein_Interaction Tissue_Expression	(2 selecter ons (0 sel	d) ecte		

Results for KEGG Pathways

Functional Annotation Clustering

Current Gene List: List_2 Current Background: Homo sapiens 4 DAVID IDs Options Classification Stringency Medium ~ Rerun using options Create Sublist

1 Cluster(s)

<mark> Download File</mark>

Help and Manual

	Annotation Cluster 1	Enrichment Score: 2.4	G	 Count	P_Value	Benjamini
	GOTERM_BP_DIRECT	somatic stem cell population maintenance	<u>RT</u>	 4	5.5E-8	4.8E-6
	GOTERM_BP_DIRECT	endodermal cell fate specification	<u>RT</u>	 3	2.1E-7	9.1E-6
	KEGG_PATHWAY	Signaling pathways regulating pluripotency of stem cells	<u>RT</u>	 4	8.1E-6	2.4E-5
	GOTERM_BP_DIRECT	regulation of gene expression	<u>RT</u>	 3	1.0E-4	3.0E-3
	GOTERM_MF_DIRECT	transcription factor activity, sequence- specific DNA binding	<u>RT</u>	 4	1.8E-4	5.1E-3
	GOTERM_BP_DIRECT	positive regulation of transcription from RNA polymerase II promoter	<u>RT</u>	 4	2.0E-4	4.3E-3
	GOTERM_MF_DIRECT	transcription regulatory region DNA binding	<u>RT</u>	 3	4.7E-4	6.6E-3
	UP_KEYWORDS	DNA-binding	<u>RT</u>	4	9.9E-4	2.0E-2
	UP_KEYWORDS	Transcription regulation	<u>RT</u>	4	1.5E-3	1.4E-2
	UP_KEYWORDS	Transcription	<u>RT</u>	4	1.6E-3	1.0E-2
	GOTERM_BP_DIRECT	transcription from RNA polymerase II promoter	<u>RT</u>	 3	2.7E-3	4.6E-2
	GOTERM_MF_DIRECT	sequence-specific DNA binding	<u>RT</u>	 3	2.8E-3	2.5E-2
	UP_KEYWORDS	Activator	<u>RT</u>	3	3.0E-3	1.5E-2
	GOTERM_CC_DIRECT	nucleoplasm	<u>RT</u>	4	3.6E-3	3.2E-2
	GOTERM_BP_DIRECT	negative regulation of transcription from RNA polymerase II promoter	<u>RT</u>	 3	5.4E-3	7.4E-2
	UP_KEYWORDS	Developmental protein	<u>RT</u>	 3	6.2E-3	2.4E-2
	UP_KEYWORDS	Isopeptide bond	<u>RT</u>	 3	8.7E-3	2.9E-2
	UP_KEYWORDS	Nucleus	<u>RT</u>	 4	1.7E-2	4.7E-2
	UP_KEYWORDS	Ubl conjugation	<u>RT</u>	 3	1.9E-2	4.8E-2
	GOTERM_BP_DIRECT	regulation of transcription, DNA- templated	<u>RT</u>	 3	2.3E-2	2.5E-1
	GOTERM_MF_DIRECT	DNA binding	<u>RT</u>	3	2.8E-2	1.8E-1

Login | Register

13,432,841 lists analyzed 245,575 terms 132 libraries

Analyze

What's New? Libraries

About Help

Find a Gene

Input data

Choose an input file to upload. Either in BED format or a list of genes. For a quantitative set, add a comma and the level of membership of that gene. The membership level is a number between 0.0 and 1.0 to represent a weight for each gene, where the weight of 0.0 will completely discard the gene from the enrichment analysis and the weight of 1.0 is the maximum.

Try an example BED file.

Browse... No file selected.

Or paste in a list of gene symbols optionally followed by a comma and levels of membership. Try two examples: crisp set example, fuzzy set example

Enter a brief description for the list in case you want to share it. (Optional)

Contribute

P 10

目白日日

TT 10 TS

📌 Enrichr		Login Register
Transcription Pathways Onto	logies Disease/Drugs Cell Typ	oes Misc Legacy Crowd
Description No description available (4	1 genes)	
Human Gene Atlas 🛛 🖯	Mouse Gene Atlas 0	ARCHS4 Tissues
PrefrontalCortex CD33+_Myeloid retina	embryonic_stem_line_V26_2_p16 embryonic_stem_line_Bruce4_p13 cornea	MORULA ESOPHAGUS (BULK TISSUE) AMNIOTIC FLUID
	stomach intestine_large	MIDBRAIN HUMAN EMBRYO
ARCHS4 Cell-lines 0	Allen Brain Atlas up 🚯	Allen Brain Atlas down 💿
BXPC3 CFPAC1	Sub paraventricular zone Bed nuclei of the stria terminalis, posterior c	mantle zone of r3Lim r6 alar plate
HCC1419 FADU	anteroventral periventricular preoptic nucle bed nucleus of the stria terminalis, mediose	intermediate stratum of r6Lim rhombomere 6
T84	bed nucleus of the stria terminalis, laterocer	rhombomere 7
GTEx Tissue Sample Gene Expression	GTEx Tissue Sample Gene Expression	Cancer Cell Line 1 Encyclopedia
GTEX-NPJ8-0011-R7a-SM-2HMJV_brain_male GTEX-X261-0011-R5A-SM-3NMB4_brain_male	GTEX-TML8-0326-SM-4GICN_lung_female_40 GTEX-XUW1-2326-SM-4BOO5_breast_female	KYSE140_OESOPHAGUS TE6_OESOPHAGUS
GTEX-OHPN-0011-R7A-SM-215FI_brain_fema GTEX-TSE9-0011-R7A-SM-3DB7P_brain_fema	GTEX-R53T-1526-SM-48FEK_breast_female_5 GTEX-UJHI-0726-SM-3DB92_lung_female_50-	GOS3_CENTRAL_NERVOUS_SYSTEM
GTEX-PWO3-0011-R5A-SM-2I5EZ_brain_fema	GTEX-XUJ4-1426-SM-4BONT_lung_female_60	HLC1_LUNG

2 11:

2 11

14 14 14 13 13

🕨 🖹 😓 💺 🛔 🍕 🖆 🕑		💽 ## ·	9) 🔘	Enter search te	erm	0	-	H
ntrol Panel			• 🗆 X					
vork Style Select Dynamic Network 🏶 ClueGO+CluePedia								
9	e		<u> </u>					
ueGO Settings								
Ontologies/Pathways 🕎	Evidence 🕜							
Type Name # Date Shape	Code							
GO BiologicalProcess-GOA 15 23.02.2017 Ellipse	All		~					
GO CellularComponent-EBI-Qui 19 13.09.2017 Ellipse	All_Experimental_(EXP,IDA,I	PI,IMP,IGI,IEP)						
GO CellularComponent-GOA 18 23.02.2017 Ellipse	All_without_IEA							
GO ImmuneSystemProcess-EB 11 13.09.2017 Dilpse	EXP (Inferred from Experime							
00 MalagularEurotias EBI Quia 48, 12 09 2017	IBA (Inferred from Biological							
GO Molecular-uncluin-con-colo4013.03.2017 Emple	IBD (Inferred from Biological	Aspect of Descende	~					
- Update Ontologies	4		0					
Update Ontologies, Pathways & Annotation Files								
REACTOME - Update REACTOME pathways/reactions		~						
ClueGO Update						<u></u>		
		Update						
Network Specificity		Detailed	0					
Coold Medun Use GO Term Fusion @ Medun Show only Pathways with pV s Advanced Term/Pathway Selection Options								
•		Detailed		III C Network		2 0-0 4	0-0	¢
Owner Network: Specificity Owner Medium Use GO Term Fusion Image: Content of the second seco		Detailed 0.0500	• •	Table Panel		2 0-0 Ø		•
Bood Metwork: Specificity Use GO Term Fusion Image: Control of the second seco		Detailed 0.0000 V Max Lavel		Table Panel		2 0-0 Ø		•
Occod Metwork Specificity Use GO Term Fusion Image: Comparison of the second s		Detailed 0.0500		Table Panel		2 0-0 Ø		•
Octor Metwork Specificity Use GO Term Fusion Image: Control of the second sec		Detailed 0.0000 V Max Lavel		Table Panel \clubsuit \square $+$ \square $\blacksquare f(x)$		2 0-0 4		•
Good Metwork: Specificity Use GO Term Fusion Image: Control of the second seco		Detailed 0.0000 V Max Lavel	••	Table Panel		2 0-0 Ø		•
October Metwork Specificity Use GO Term Fusion Image: Control of the c	60 ∳i is Specific	Detailes 0.0000 ✓ Max Lavel (4.000 (♦) %Ger	••	Table Panel \clubsuit \square $+$ \square $\blacksquare f(x)$		2 0-0 4		•
Good Metwork: Specificity Use GO Term Fusion Image: Constraint of the second s		Detailes 0.0000 ✓ Max Lavel (4.000 (♦) %Ger	••	Table Panel \clubsuit \square $+$ \square $\blacksquare f(x)$		2 0-0 Ø		•
Orioli Motion Use 60 Tem Fusion Image: Constraint of the second		Detailes 0.0000 ✓ Max Lavel (4.000 (♦) %Ger	••	Table Panel \clubsuit \square $+$ \square $\blacksquare f(x)$		2 0-0 ∳Ø		•
Good Metwork: Specificity Use GO Term Fusion Image: Constraint of the second s		Detailes 0.0000 ✓ Max Lavel (4.000 (♦) %Ger	••	Table Panel \clubsuit \square $+$ \square $\blacksquare f(x)$		2 0-0 4		•
Bobal Metwork: Specificity Use GO Term Fusion Image: Constraint of the second	00]∰% is Specific	Detailes 0.0000 ✓ Max Lavel (4.000 (♦) %Ger	••	Table Panel \clubsuit \square $+$ \square $\blacksquare f(x)$		2 0-0 4		•
Good Metwork Specificity Use Of Term Fusion Image: Control of the second secon	00]∰% is Specific	Detailed 0.000 Max Level 4.000 🔄 %Ger	••	Table Panel \clubsuit \square $+$ \square $\blacksquare f(x)$		2 0-0 4		•
Octor Metwork Specificity Use GO Term Fusion Image: Control of the second seco	00]∰% is Specific	Detailed 0.000 Max Level 4.000 🔄 %Ger	••	Table Panel \clubsuit \square $+$ \square $\blacksquare f(x)$		2 0-0 Ø		•
Bood Metwork Specificity Use GO Term Fusion Image: Control of the second secon	00]∰% is Specific	Detailed 0.000 Max Level 4.000 🔄 %Ger	5 5 6	Table Panel \clubsuit \square $+$ \square $\blacksquare f(x)$		2 0-0 Ø		
Groud Medium Use Go Term Fusion Image: Comparison of the second seco	00[∳]% is Specific H	Destries 0.0000 ↓ Max Level (4.000 ◆ %Ger 4.000 ◆ %Ger 4.000 ◆ %Ger	5 5 6	Table Panel \clubsuit \square $+$ \square $\blacksquare f(x)$		2 0-0 9		•

Enrichment Map

- Use available gene-set scoring models
 - threshold dependent (e.g. Fisher's) or threshold free (e.g. GSEA)
- Use the network framework to organize gene-sets exploiting their inter-dependencies

http://baderlab.org/Software/EnrichmentMap/

Pathway enrichment analysis software: R / Bioconductor

ORA: topGO, clusterProfiler, RDAVIDWebService, ReactomePA, enrichR, GOseq, PathwaySplice

FCS: globaltest, gage, Camera, PADOG, SetRank

Others: GSVA, SPIA, PathNet, TcGSA, QuSAGE, DNEA

Ensembles: piano, EGSEA, ToPASeq... And many more

Final remarks:

- You can always find standalone and web-based applications for pathway analysis, but many tools exist either as scripts or as libraries that you must run.
- Therefore, it is good to learn how to program.
- Currently, the two most popular programming languages in bioinformatics are R and python. R has a suite of software for bioinformatics called "Bioconductor", while python has "bioconda".
- Learn R!

What have we learned today?

What is pathway/gene-set analysis How to perform gene set analysis Two types of gene set analysis (ORA and FCS) What is multiple test correction How to use software for gene set analysis (ORA and FCS)

